Monitoring Technique

VARIMETER
 Underload Monitor ($\boldsymbol{\operatorname { c o s } \varphi} \varphi$ Monitor)
 IK 9065, SK 9065, SL 9065CT

Function Diagram

Circuit Diagrams

IK/SK 9065.11

IK/SK 9065.11/100

SL 9065.11CT/100

- According to EN 60 255-1
- Detection of underload $(\cos \varphi)$
- Without auxiliary supply
- Current up to 8 A

Motors up to 5 A nominal current can be connected directly

- Higher currents via current transformer
- SL 9065CT with integrated current transformer for currents up to 100 A
- Adjustable response value
- Automatic reset (Alarm auto reset)
- Adjustable operate delay up to 100 s
- De-energized on trip
- For single and 3-phase loads e.g. motors
- Independent of phase sequence
- 1 changeover contact
- LED indicator voltage supply and alarm
- DIN rail or screw mounting
- Devices available in 2 enclosure versions IK9065: depth 58 mm, with terminals at the bottom for installation systems and industrial distribution systems according to DIN 43880 SK 9065, SL 9065CT: depth 98 mm , with terminals at the top for cabinets with mounting plate and cable duct
- IK 9065, SK 9065 width 17.5 mm

SL 9065CT width 35 mm
IK/SK 9065/100: as IK/SK 9065 but:

- programmable for
- automatic reset or manual reset (latched alarm)
- energized or de-energized on trip
- With reset button
- Remote reset

Approvals and Markings

C

Applications

Monitors underload and no load on squirrel cage motors e.g.

- fan monitoring (broken belt)
- filter monitoring (blocked filter)
- pump monitoring (blocked valve, dry running)
- general cos phi monitoring
- for industrial and railway applications

Function

The underload monitor IK/SK/SL 9065 measures the phase shift between voltage and current. The phase angle changes with changing load. This measuring method is suitable to monitor asynchronous motors on underload and no load independent of motor size. In some cases the $\cos \varphi$ does not change much with load change on the motor, e.g.:

- small load change on oversized motor
- single phase chaded-pole and collector motors

For these cases we recommend the use of our motor load monitor BH 9097.
If a cos phi value lower then the adjusted value is detected the output relay changes into alarm state after the adjusted time delay t_{v} and the red LED "Alarm" lights up. If the underload monitor is in auto reset mode it changes back to normal state without delay when the cos phi rises above the adjusted cos phi value.

Indicators

green LED:
on, when supply connected to L1-L2
red LED:

Connection Terminals

Terminal designation	Signal designation
L1, L2, L3	Connection for 3-phase systems
L1', L1 1)	Current measuring circuit, connection for external current transformer possible 1)
X1, L1 ${ }^{\text {2 }}$	Control input (manual reset / auto-Reset) ${ }^{2)}$ X1/L1 not bridged: manual reset X1/L1 bridged: auto-reset
11, 12, 14	Changeover contact

${ }^{1)}$ Only at IK/SK 9065
${ }^{2}$) Only at IK/SK/SL 9065.11/100

Notes

Monitoring of single phase load is also possible. The terminal L3 is not connected in this case (see connection diagram). The underload monitor must be ordered for the right voltage e.g. a unit for 3 AC 230 V for a single phase 230 V application.
When the underload monitor IK/SK 9065 is connected to the supply voltage L1-L2-L3 and no current is flowing in the current path L1-L1' the unit changes also in alarm state.
The current path L1-L1' allows to connect currents up to 8 A directly at IK/ SK 9065. When connecting asynchronous motors not only the nominal current is important, but also the much higher starting current. The overload characteristic of the current input allows to connect motors with nominal current up to 4..5 A depending on the starting conditions. This is at 3 AC 400 V a motor load of $1.5 \ldots 2.2 \mathrm{~kW}$.
It is important that the motor is connected to L1' and not to L1. On wrong connection the phase angle will be measured in a wrong way and the underload monitor IK/SK 9065 will not work.

For higher currents over 8 A (nominal motor current over 5 A) external current transformers can be used (see Connection Examples). Also here the current transformers have to be connected with the right polarity. All standard current transformers of class 3 or better can be used (1 A or 5 A types). The integrated current transformer at SL 9065CT allows to connect currents up to 100 A directly.

The variant IK/SK/SL 9065.11/100 allows the following settings: Bridge
X1-L1
$\bullet \quad$ Automatic restart (Alarm auto reset)

- - Manual restart (Latched Alarm), reset with built in push button, external push button on X1-L1 or by disconnecting the supply voltage.

Switch "REL" on front side

- Position "A": energized on trip (relay energizes on underload-alarm)
- Position "R": de-energized on trip (relay de-energizes on under load-alarm)

Technical Data

Input

Nominal voltage $\mathbf{U}_{\mathbf{N}}:$	$(=$ Motor voltage)
	$3 \mathrm{AC}($ or AC$) 110,230,400 \mathrm{~V}$
Voltage range:	$0.8 \ldots 1.1 \mathrm{U}_{\mathrm{N}}$
Nominal frequency of $\mathbf{U}_{\mathrm{N}}:$	$45 \ldots 65 \mathrm{~Hz}$

Nom
(L1-L2):
Current Path
Current range
IK 9065, SK 9065:
Internal resistance:
Consumption:

Short time overload:
Suitable current transformers:
Current range SL 9065CT:

Setting range $\boldsymbol{\operatorname { c o s }} \varphi$: Operate delay t_{v} :
0.1 ... 2 A 0.5 ... 8 A*
approx. $30 \mathrm{~m} \Omega$ approx. $10 \mathrm{~m} \Omega$
max. 0.14 VA max. 0.7 VA

* (for higher currents use external current transformer see connection diagram)
$2.5 \mathrm{xI}_{\max }$ for $2 \mathrm{~s}, 5 \mathrm{x}_{\max }$ for 0.5 s
1 A or 5 A types, class 3,
with necessary load capacity
5 ... 100 A via integrated current transformer in the base (max. wire-diameter: 10 mm) 0 ... 0.97 infinite variable 1... 100 s infinite variable

Output

Contacts:
Thermal current $I_{\text {th }}$:
Switching capacity
to AC 15
NO contact:
NC contact:
to DC 13 at 0.1 Hz :
Electrical life
to AC 15 at $1 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}$:
Short-circuit strength
max. fuse rating:
Mechanical life:
General Data
Operating mode:
Temperature range
Operation
Storage:
Altitude:
Clearance and creepage distances
rated impulse voltage /
pollution degree:
EMC
Electrostatic discharge:
HF-irradiation:
80 MHz ... 1 GHz :
1.4 GHz ... 2 GHz :

2 GHz ... 2.5 GHz :
Fast transients:
Surge voltages
between
wires for power supply:
HF-wire guided:
Interference suppression:

Degree of protection

Housing:

Terminals:
Housing:
Vibration resistance:
Climate resistance:
Terminal designation:
Wire connection:
Cross section

Stripping length:

1 changeover contact
4 A

3 A / AC 230 V IEC/EN 60 947-5-1
1 A / AC 230 V IEC/EN 60 947-5-1
1 A / DC 24 V
IEC/EN 60 947-5-1
1.5×10^{5} switching cycles
IEC/EC 60 947-5-1
4 AgL
IEC/EN 60 947-5-1
30×10^{6} switching cycles

Continuous operation
$-25 \ldots+60^{\circ} \mathrm{C}$
$-25 \ldots+60^{\circ} \mathrm{C}$
< 2,000 m

4 kV / 2
IEC 60 664-1
8 kV (air)
$20 \mathrm{~V} / \mathrm{m}$
$20 \mathrm{~V} / \mathrm{m}$
$10 \mathrm{~V} / \mathrm{m}$

- 000-4-3

IEC/EN 61 000-4-3
IEC/EN 61 000-4-3
IEC/EN 61 000-4-4

2 kV
IEC/EN 61 000-4-5
IEC/EN 61 000-4-6
10 V
Limit value class A^{*}
*) The device is designed for the usage under industrial conditions (Class A, EN 55011).
When connected to a low voltage public system (Class B, EN 55011) radio interference can be generated. To avoid this, appropriate measures have to be taken.
IP $40 \quad$ IEC/EN 60529
IP $20 \quad$ IEC/EN 60529
Thermoplastic with Vo behaviour
according to UL subject 94
Amplitude 0.35 mm
frequency $10 \ldots 55 \mathrm{~Hz}$ IEC/EN 60 068-2-6
$40 / 060 / 04$
EN 50005

$2 \times 2.5 \mathrm{~mm}^{2}$ solid or
$1 \times 1.5 \mathrm{~mm}^{2}$ stranded wire with sleeve
DIN $46228-1 /-2 /-3 /-4$
10 mm

Technical Data

Wire fixing:
Fixing torque:
Mounting:

Weight:
IK 9065:
SK 9065:
SL 9065CT:

Flat terminals with self-lifting clamping piece IEC/EN 60 999-1 $0,8 \mathrm{Nm}$
DIN rail mounting (IEC/EN 60715) or screw mounting M4, 90 mm hole pattern, with additional clip available as accessory
approx 65 g
approx 84 g
approx. 195 g

Dimensions

Width x height x depth:

IK 9065:
SK 9065:
SL 9065CT:

Classification to DIN EN 50155 for IK 9065 and SK 9065
Vibration and
shock resistance:
Ambient temperature:
Category 1, Class B
IEC/EN 61373
T1, T2 compliant
T3 and TX with operational limitations

Protective coating of the PCB: No

Standard Types

IK 9065.113 AC 400 V $0.4 \ldots 8$ A $1 \ldots 100 \mathrm{~s}$
Article number:

- Output:
- De-energized on trip:
- Nominal voltage U_{N} :

0055534
1 changeover contact

- Current range:

3 AC 400 V

- Operate delay:
0.4 ... 8 A
- Width:
$1 . .100 \mathrm{~s}$
17.5 mm

SK 9065.113 AC $400 \mathrm{~V} \quad 0.4 \ldots 8$ A $1 \ldots 100 \mathrm{~s}$
Article number: 0055816

- Output: 1 changeover contact
- De-energized on trip
- Nominal voltage U_{N} : 3 AC 400 V
- Current range: $\quad 0.4$... 8 A
- Operate delay: $1 \ldots 100 \mathrm{~s}$
- Width: $\quad 17.5 \mathrm{~mm}$

SL 9065.11CT/100 3 AC 400 V $5 \ldots 100$ A $1 \ldots 100$ s
Article number: 0059410

- Output: 1 changeover contact
- Nominal voltage U_{N} : 3 AC 400 V
- Current range: $5 \ldots 100 \mathrm{~A}$
- Operate delay: 1 ... 100 s
- programmable for: manual reset with built in or external push button, energized or de-energized on trip, selection via switch on the front
- Width: 35 mm

Variants

IK 9065.11/100,
SK 9065.11/100:
programmable for: manual reset with built in or external push button, energized or de-energized on trip, selection via switch on the front

Ordering example for variants

Accessories

ET 4086-0-2:

Additional clip for screw mounting Article number: 0046578

Connection Examples

IK 9065.11 with 3-phase load

IK 9065.11 with single-phase load

IK/SK 9065.11 for motors with separate windings

IK/SK 9065.11 with 3-phase load and external current transformer

IK/SK 9065.11/100 with 3-phase load

